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ABSTRACT 

Four isotope power system concepts are presented and compared 

on a common basis for application to on-board electrical prime 

power for an autonomous planetary rover vehicle. A representative 

design point corresponding to the Mars Rover Sample Return (MRSR) 

preliminary mission requirements ( 5 0 0  W) was selected for compari- 

son purposes. All systems concepts utilize the GPHS isotope heat 

source developed by DOE. Two of the concepts employ thermoelec- 

tric (TE) conversion: one using the GPHS RTG used as a reference 

case, the other using an advanced RTG with improved thermoelectric 

materials. The other two concepts employed are dynamic isotope 

power systems (DIPS): one using a closed Brayton cycle (CBC) tur- 

boalternator, and the other using a free piston Stirling cycle 

engine/linear alternator (FPSE) with integrated heat source/heater 

head. Near term technology levels have been assumed for concept 

characterization using component technology figure-of-merit values 

taken from the published literature. For example, the CBC charac- 

terization draws from the historical test database accumulated 

from space Brayton cycle subsystems and components from the 

NASA "B" engine through the mini-BRU. TE system performance is 

estimated from Voyager/MHW-RTG flight experience through Mod-RTG 

performance estimates considering recent advances in TE materials 
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under the DOD/DOE/NASA SP-100 and NASA CSTI programs. The Stirl- 

ing DIPS system is characterized from scaled-down Space Power 

Demonstrator Engine (SPDE) data using the DOE General Purpose 

Heat Source GPHS directly incorporated into the heater head. 

The characterization/comparison results presented here dif- 

fer from previous comparison of isotope power (made for LEO appli- 

cations) because of the elevated background temperature on the 

Martian surface compared to LEO, and the higher sensitivity of 

dynamic systems to elevated sink temperature. Although dynamic 

systems have historically shown advantages of lower specific mass 

and reduced isotope inventory per delivered electrical watt, the 

mass advantage of dynamic systems is significantly reduced for 

this application due to Mars' elevated background temperature. 

INTRODUCTION 

The Mars Rover Sample Return (MRSR) Mission proposed for 

the late 1990's [1,21, would place two spacecraft in orbit about 

Mars and land a surface rover vehicle (Fig. 1). In addition, a 

separate ascent stage would return about 100 kg of geological sam- 

ples gathered by the rover to Earth. Building on the legacy from 

the Viking program, where delivery of payloads to the Martian sur- 

face was demonstrated, the MRSR mission takes full advantage of 

advances in computer, telecommunications, software and robotics 

technology that have taken place since then; particularly the 

autonomous land vehicle navigation systems developed under DARPA 

sponsorship [ 3 ] .  The reference design Mars rover, at 842 kg, is 

not much different in size and mass than the Viking lander which 

weighed 600  kg, but it has greatly improved capability. This 

vehicle is mobile and capable of traversing the Mars terrain 
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autonomously; that is, performing its local navigation (100 to 

1000 m traverse) without human intervention. 

Reference 3 gives a fairly complete description of this vehi- 

cle as defined to date. Due to its small size and the relatively 

modest amount of locomotive energy required compared to other mis- 

sion activities, this vehicle will be powered electrically; that 

is, one on-board source will be used to provide power for all 

functions. Table 1 summarizes the requirements as determined to 

date for this on-board source [4,51. 

The electrical load serviced by this source is not constant: 

modal timelines have been generated for the various surface opera- 

tions which take into account estimated demands from each 

on-board system as it is activated. For example, a typical power 

profile during surface operations for the AREAL rover is shown in 

Fig. 2 [41. This profile can be characterized as a base load with 

intermittent peaks superimposed on it. The peak value is roughly 

three times the baseload power level, but due to its relatively 

low repetition rate and duty cycle, the total integrated value is 

close to the baseload requirement. A steady state generator com- 

bined with secondary battery storage system is most appropriate 

to service this load. 

Based on power profile information for all operating modes 

a conservative estimate of 350 Wh of battery storage has been 

established to accommodate the peaking requirement. 

battery discharge depth will be less than 10 percent of rated 

capacity, so that a moderate cycle life, high energy density sys- 

tem such as silver/zinc can be used. 

less than 20 kg. 

Normally the 

The battery should weigh 
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The steady-state power system must continuously supply the 

time-averaged power demand from all users, plus extra energy over 

time to recharge and maintain the battery. Even at idle, power 

consumption aboard the vehicle is an estimated 2 4 0  W [ 5 1 .  

aggregate, this translates to a steady state demand of roughly 

half a kilowatt. Given the requirement for this amount of contin- 

uous primary power, the low levels of sunlight experienced on the 

surface, and the wind and dust environment (see Table 2 ) ,  solar 

arrays are very large and cumbersome. Therefore, a nuclear heat 

source is ideally suited to this mission. 

In the 

MRSR POWER SYSTEM CONCEPTS 

Four different isotope power system concepts have been evaluated 

in this study; the GPHS-RTG, the Mod-RTG, closed Brayton cycle 

DIPS and the free-piston Stirling engine DIPS. Each concept is 

briefly described and performance characteristics for a 500 We 

system are given. 

GPHS-RTG 

The GPHS-RTG (Fig. 3) is basically a finned assembly of 

thermoelectric elements enclosing a stack of GPHS blacks and 

radiatively coupled to them. Heat flow is outward; the elements 

take advantage of the temperature difference between the interior 

to the outer surface, to convert some of the heat flow from the 

isotope capsule to low voltage dc; the conversion system is well 

developed for space use [ 6 1 .  Multiple series-parallel strings of 

several hundred thermoelectric couples are designed to accommodate 

failure of any element in the string with only partial degrada- 

tion. Table 3 summarizes the performance and mass breakdown of a 

Mars rover power system based on the GPHS-RTG. Power conditioning 
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and controls, structure, and the 350 Wh energy storage elements 

are included in this estimate. 

MOD-RTG 

The Mod-RTG [ 7 1  is the evolutionary successor to the 

GPHS-RTG. Based on improvements in the thermoelectric couples 

the BOL converter efficiency is expected to increase to 7.6 which, 

combined with packaging refinements over the GPHS-RTG will further 

improve specific power. Table 4 summarizes the performance and 

mass breakdown for a Mod-RTG based power system configured for 

the MRSR mission. 

CLOSED BRAYTON CYCLE 

The closed Brayton cycle (CBC) dynamic system has been 

advocated by Rockwell [ 8 1  as power source for this vehicle. 

Known advantages cited for dynamic systems are their higher ther- 

mal efficiencies. The conversion efficiencies historically demon- 

strated by dynamic systems have ranged from 20 to 30 percent. For 

an isotope system, this translates to less waste heat rejected and 

to considerably reduced fuel inventory per electrical watt deliv- 

ered; resulting in a significant heat source mass reduction. 

The technology base for this system is the Brayton Isotope 

Power System (BIPS) developed by the Garrett Corporation for NASA 

in the late 1970’s [ 9 1 .  The BIPS was a recuperated system con- 

sisting of a small single shaft turboalternator (the mini-BRU), 

one or more heat source assemblies with source heat exchangers, 

waste heat exchangers and a pumped loop radiator. It was designed 

to provide 5 0 0  to 2100 electrical watts using one mini-BRU by add- 

ing the required number of heat source, heat exchanger and radia- 

tor modules (Fig. 4 ) .  BIPS was intended to be a high performance 
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power source for LEO application: 

was assumed. The mini-BRU was unique for its small size (500 to 

a sink temperature of 216 K 

2100 W); although turbomachinery generally does not scale well to 

low power levels a compressor efficiency of 77 percent and a tur- 

bine efficiency of 83.6 percent was achieved. In testing BIPS 

achieved 24.5 percent efficiency (Fig. 5 )  at a turbine inlet tem- 

perature of 1020 K. 

Table V presents the performance and mass breakdown of a 

500 W Brayton DIPS, based on BIPS technology, and specifically 

configured for the MRSR mission; for example, dual PCU's for 

100 percent redundancy. 

ance, a higher turbine inlet temperature (1150 K) than BIPS was 

required, nevertheless conventional superalloy materials and con- 

In order to achieve improved perform- 

struction are retained. 

FREE PISTON STIRLING CYCLE 

Free piston Stirling cycle engine (FPSE) dynamic conversion 

was modeled because it provides a thermodynamic advantage over 

the Brayton cycle. For equivalent performance it operates at a 

lower cycle temperature ratio which translates to reduced radiator 

size. It is mechanically simple with few moving parts, which are 

not in contact during operation. 

basis the Stirling engine does not scale favorably with increased 

power level, its specific weight is lower than the Brayton cycle 

in the range 1 to 10 kWe. The FPSE is currently being developed 

by NASA under the CSTI program. Development goals include a 

1300 K engine employing refractory metals at a temperature ratio 

of 2.0 for SP-100 application with specific weight less than 

6 kg/kWe, and a 1050 K superalloy engine at a temperature ratio of 

Although on a specific weight 
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2.0 as an intermediate goal. The first machine representative of 

a space configuration, the Space Power Demonstrator Engine (SPDE) 

is the largest FPSE built and demonstrated. It has delivered 

17 kWe with a (thermal to mechanical) efficiency of 22  percent, 

operating at a temperature ratio of 2.0. Although the SPDE was a 

developmental engine it can, with straightforward material substi- 

tutions, and replacing bolts and flanges with welds, provide a 

specific mass of 7.2 kg/kWe in flight configuration [lo]. 

The Stirling engine scales favorably to lower power levels 

because surface area to volume increases as unit size is reduced. 

This reduces the level of heat flux across the heater head bound- 

ary into the working fluid. At a few hundred watts it approxi- 

mates the heat flux from an isotope source. Therefore the 

separate HSA and intermediate heat transfer loop required for a 

BIPS design can be eliminated, and at these unit sizes the heater 

head can be heated directly. Figure 6 shows a concept for direct 

integration of an FPSE heater head with the GPHS isotope heat 

source at a unit size of 5 0 0  We. The GPHS blocks are arranged 

around the heater head circumferentially and held in place by a 

fusible strap assembly (FSA) as shown in Fig. 6(a). The GPHS 

aeroshell could also be modified in shape from a rectangular block 

to an annular segment, in order to conform more closely to the 

heater head cylinder and thus increase isotope packing density as 

shown in Fig. 6(b). This is desirable to reduce size and heat 

source/heater head insulation mass. Figure 7 depicts heat 

source/heater head and engine detail corresponding to a dual 

engine installation. 
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When the engine is running, heat continuously evolving from 

the decaying isotope is transferred to the working fluid in the 

hot end and removed via the engine low temperature loop which is 

physically in close proximity to the hot end. Borrowing from 

earlier practice the heat source/aeroshell heater head is enclosed 

by multiple layers of metallic foil insulation which will melt and 

provide a radiative path from the heater head if the engine fails. 

Further definition, however, will be needed to ensure reentry 

safety, since current GPHS container designs utilize a fusible 

link which allows the blocks to be ejected and dispersed. In this 

concept the FSA releases the GPHS blocks after the multilayer foil 

has been stripped away. 

Figure 8 depicts the dual 500 W, fully redundant FPSE instal- 

lation attached to the rover vehicle. The radiator basket enclos- 

ing the heat source/engine assembly contains two cooling loops. 

Performance and mass breakdown for this system is summarized in 

Table 5 .  

MARS BACKGROUND SINK TEMPERATURE 

The specific power of the Mars Brayton and Stirling cycle 

conceptual designs are lower than those designed for LEO applica- 

tions because the thermal background seen on Mars surface is con- 

siderably higher than the 220 K equivalent sink temperature of 

LEO. For example, the range of Mars atmosphere temperatures meas- 

ured by Viking lander was 190 to 240 K. IR measurements of sur- 

face temperatures observed during the Viking primary mission 

ranged from 130 to 290 K. Bearing in mind that radiators would 

probably have to be mounted on the bottom of the vehicle (the 

upper surface must remain unobstructed for sensors, communication 
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antennae, etc.) the radiator heats the ground beneath the vehicle 

which returns an elevated surface temperature. For a stationary 

vehicle this elevated background could easily exceed the ambient 

background by 20 to 30 K. Considering the above factors an equiv- 

alent sink temperature of 290 K was selected for design purposes. 

EFFECT OF ELEVATED BACKGROUND TEMPERATURE 

An elevated temperature background has a major impact on the 

performance of a Brayton cycle. As background temperature is 

raised, radiator area must be increased to reject the same amount 

of waste heat or the cycle temperature ratio must be reduced to 

elevate the radiator temperature. System mass is significantly 

affected. This can be illustrated by considering the component 

scaling data for the original BIPS and its cycle performance vari- 

ation as temperature ratio is reduced (Fig. 5 ) .  From this data, 

mass breakdowns of (mini-BRU) system design points sized to pro- 

vide the same output power over the range of background tempera- 

tures (design points optimized for minimum mass at fixed turbine 

inlet temperature) can be plotted (Fig. 9 ) .  The data illustrates 

how system mass, mainly due to increased radiator area and heat 

source which must be added as cycle efficiency falls, would rise 

as background temperature is elevated from 216 to 290 K. 

The mass penalty comes from the increased radiator area 

which is required to reject heat at reduced delta T. Figure 10 

shows area required (emissivity assumed is 0.8) to radiate one 

thermal kilowatt at two rejection temperatures, 330 and 550 K, 

as background temperature varies from 210 to 290 K. The radiator 

area required for a 330 K rejection temperature, which corresponds 

to the mean effective temperature of the MRSR Brayton radiator, 
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changes by a factor of 2.6, while the area required for a 550 K 

radiator changes less than 10 percent. 

On the other hand a thermoelectric system, which rejects 

heat at a temperature of 550 K, shows a much smaller change over 

the same range of sink temperatures. Figure 11 shows the effect 

of cold-junction temperature on RTG weight and power, system effi- 

ciency and specific power for a thermoelectric system [lll simi- 

lar to the Mod-RTG (a figure of merit of 0.846~10-3/~C is assumed 

for the calculation). For a given fin geometry and radiator 

area, elevating sink temperature from 20 K (interplanetary space) 

to 290 K (Mars or lunar surface) raises the cold-junction tempera- 

ture by only 8 K; resulting in an overall performance reduction 

of only one percent. 

RESULTS AND CONCLUSIONS 

System mass breakdowns showing key subsystems for the four 

system concepts are shown in Fig. 12. Table 7 presents a summary 

comparison with respect to power system attributes that would be 

of most concern to a user, including required isotope inventory in 

kilograms of enriched Pu02 and number of GPHS blocks, surface area 

aboard the vehicle which must remain unobstructed for radiator 

installation, and effective radiator temperature. On the basis of 

system mass the FPSE power system shows a 21 percent advantage 

over its nearest competitor, the Mod-RTG power system. On the 

basis of isotope inventory, both the FPSE and CBC systems require 

only about a third the fuel of the Mod-RTG system. Comparison of 

radiator area shows the Mod-RTG with a 39 percent advantage over 

the FPSE System. 

be an important driver in concept selection. In general, system 

Any one of the comparison bases discussed may 
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mass is the most useful comparison at this early stage of concept 

identification. 
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TABLE 1. - MARS ROVER POWER SYSTEM STUDY - THE REQUIREMENTS 

Vehicle mass, kg . . . . . . . . . . . . . . . . . .  842  
Power, kWe 
Nominal . . . . . . . . . . . . . . . .  0.5 continuous 
Peak . . . . . . . . . . . . . . . . . . . . . . .  2.2 

Energy storage for peak power, Wh . . . . . . . . . .  350 
Power system mass . . . . . . . . . . . . . . . . .  129 
Length of mission BOL to EOM, year . . . . . . . . . .  5 
Reliability . . . . . . . . . .  No single point failure 
Technology cutoff date . . . . . . . . . . . . . . .  1992 
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TABLE 2 . . MARS ROVER POWER SYSTEM STUDY . THE ENVIRONMENT 
Ambient solar flux (surface). Wm2 

Maximum background temperature. K 

Atmosphere on surface 

Nominal . . . . . . . . . . . . . . . . . . . . . . .  590 
Duststorm . . . . . . . . . . . . . . . . . . . . .  20 
Surface . . . . . . . . . . . . . . . . . . . . . . .  290 
Sky . . . . . . . . . . . . . . . . . . . . . . . . .  240 

Composition . . . . . . . . . . . . . . .  9 5  percent CO2 
Ambient temperature. K . . . . . . . . . . .  130 to 290 
Ambient pressure. mB . . . . . . . . . . . . . .  6 to 15 
Wind velocity. m/sec . . . . . . . . . . . . . .  7 to 50 

Dust mean particle size. pm 
Suspended . . . . . . . . . . . . . . . . . . . . . .  2.5 
Storm . . . . . . . . . . . . . . . . . . . . . . . .  100 

Saltation height. cm . . . . . . . . . . . . . . . . .  20 

TABLE 3 . . MARS ROVER POWER STUDY . GPHS-RTG CHARACTERIZATION 
Performance 
Number pf GPHS blocks . . . . . . . . . . . . . . . . . . . . . . .  39 
EOM watts per block . . . . . . . . . . . . . . . . . . . . . .  220.6 
Heat into converter (5 percent loss assumed). Watts thermal . . 8 173 
At temperature. K . . . . . . . . . . . . . . . . . . . . . .  1273 

Cold junction temperature. K . . . . . . . . . . . . . . . . . . .  586 
Radiator temperature. K . . . . . . . . . . . . . . . . . . . . .  540 
AreaBOL. m2 . . . . . . . . . . . . . . . . . . . . . . . . . .  2.0 

Converter efficiency. percent . . . . . . . . . . . . . . . . . .  6.13 
EOM o u t p u t  p o w e r .  W e  . . . . . . . . . . . . . . . . . . . . . . .  500 

GPHSblocks . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57 

Power conditioning and controls . . . . . . . . . . . . . . . . . .  10 
Energy storage. 350 Wh . . . . . . . . . . . . . . . . . . . . . . .  17 
Structure and miscellaneous . . . . . . . . . . . . . . . . . . . .  26 

Total. kg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  155 

Mass breakdown 

Generator housing (includes radiator) . . . . . . . . . . . . . . .  45 

- 

I I 
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TABLE 4 . . MARS ROVER POWER STUDY . MOD RTG CHARACTERIZATION 
Performance 
Number pf GPHS blocks . . . . . . . . . . . . . . . . . . . .  32 
EOM watts per block . . . . . . . . . . . . . . . . . . . .  220.6 
Heat into converter (5 percent loss assumed). Watts thermal . . 6900 
At temperature. K . . . . . . . . . . . . . . . . . . . . .  1273 

Cold junction temperature. K . . . . . . . . . . . . . . . . .  600 
Radiator temperature. K . . . . . . . . . . . . . . . . . . .  598 
AreaBOL. m2 . . . . . . . . . . . . . . . . . . . . . . . .  0.92 

Converter efficiency. percent . . . . . . . . . . . . . . . .  7.5 
EOM output power. We . . . . . . . . . . . . . . . . . . . . . .  500 

GPHSblocks . . . . . . . . . . . . . . . . . . . . . . . . .  46.4 

Power conditioning and controls . . . . . . . . . . . . . . .  10.3 
Energy storage. 350 Wh . . . . . . . . . . . . . . . . . . . . .  17 
Structure and miscellaneous 13 

Total. kg . . . . . . . . . . . . . . . . . . . . . . . . . .  112.2 

Mass breakdown 

Generator housing (includes radiator) . . . . . . . . . . . .  23.9 

. . . . . . . . . . . . . . . . .  

TABLE 5 . . MARS ROVER POWER STUDY . BRAYTON DIPS CHARACTERIZATION 

Performance 
Number of GPHS blocks . . . . . . . . . . . . . . . . . . . . .  
EOMwattsperblock . . . . . . . . . . . . . . . . . . . . . .  
Heat into converter (5 percent loss assumed). Watts thermal . . 
At temperature. K . . . . . . . . . . . . . . . . . . . . . .  
Cycle temperature ratio . . . . . . . . . . . . . . . . . . .  

Fraction of carnot achieved . . . . . . . . . . . . . . . . . .  
Alternator efficiency. percent . . . . . . . . . . . . . . . . .  
Radiator temperature. K . . . . . . . . . . . . . . . . .  446 
Area BOL. m2 . . . . . . . . . . . . . . . . . . . . . . . . .  

EOM output power. We . . . . . . . . . . . . . . . . . . . . . .  
Heat source assembly ( H S A )  
GPHSblocks . . . . . . . . . . . . . . . . . . . . . . . . .  
Container . . . . . . . . . . . . . . . . . . . . . . . . . .  

Converter (dual PCU with recuperator) . . . . . . . . . . . . .  
Radiator . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Power conditioning. 20 kg/kWe . . . . . . . . . . . . . . . . .  
Energy storage. 350 Wh . . . . . . . . . . . . . . . . . . . . .  
Structure and miscellaneous . . . . . . . . . . . . . . . . . .  

Total. kg . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Engine efficiency. percent . . . . . . . . . . . . . . . . . . .  

Mass breakdown 

. 1 1  
220.6 
2305 
1105 

* 3 . 5  
0.39 

. 2 4  

. 9 0  
to 308 
. 4 . 4  
a 5 0 0  

15.8 
. 5 . 2  
. 4 5  
. 2 7  
. 1 0  
* 1 7  

18 
138 
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FIGURE 1. - MARS ROVER VEHICLE. 
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( A )  REFERENCE DESIGN WITH CURRENT GPHS AEROSHELL. 

(B) COMPACT DESIGN WITH MODIFIED GPHS AEROSHELL. 

FIGURE 6. - CONCEPTS FOR DIRECT INTEGRATION FPSE HEATER HEAD WITH GPHS. 
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